β1-Integrin and Integrin Linked Kinase Regulate Astrocytic Differentiation of Neural Stem Cells
نویسندگان
چکیده
Astrogliosis with glial scar formation after damage to the nervous system is a major impediment to axonal regeneration and functional recovery. The present study examined the role of β1-integrin signaling in regulating astrocytic differentiation of neural stem cells. In the adult spinal cord β1-integrin is expressed predominantly in the ependymal region where ependymal stem cells (ESCs) reside. β1-integrin signaling suppressed astrocytic differentiation of both cultured ESCs and subventricular zone (SVZ) progenitor cells. Conditional knockout of β1-integrin enhanced astrogliogenesis both by cultured ESCs and by SVZ progenitor cells. Previous studies have shown that injection into the injured spinal cord of a self-assembling peptide amphiphile that displays an IKVAV epitope (IKVAV-PA) limits glial scar formation and enhances functional recovery. Here we find that injection of IKVAV-PA induced high levels of β1-integrin in ESCs in vivo, and that conditional knockout of β1-integrin abolished the astroglial suppressive effects of IKVAV-PA in vitro. Injection into an injured spinal cord of PAs expressing two other epitopes known to interact with β1-integrin, a Tenascin C epitope and the fibronectin epitope RGD, improved functional recovery comparable to the effects of IKVAV-PA. Finally we found that the effects of β1-integrin signaling on astrogliosis are mediated by integrin linked kinase (ILK). These observations demonstrate an important role for β1-integrin/ILK signaling in regulating astrogliosis from ESCs and suggest ILK as a potential target for limiting glial scar formation after nervous system injury.
منابع مشابه
The Effect of Laminin and Gelatin Extracellular Matrix on Short-Term Cultivation of Neonate Mouse Spermatogonial Stem Cells
Purpose: To compare the effect of laminin and gelatin on short-term culture of spermatogonial stem cells (SSCs) from neonatal mouse testes.Materials and Methods: Cell suspension containing SSCs were isolated from testes of 6 day-old mice and cultured in the presence of Glial-derived neuroterophic factor (GDNF), Epidermal Growth Factor (EGF) and Basic Fibroblastic Growth Factor (bFGF) on laminin...
متن کاملDeletion of integrin-linked kinase from neural crest cells in mice results in aortic aneurysms and embryonic lethality
Neural crest cells (NCCs) participate in the remodeling of the cardiac outflow tract and pharyngeal arch arteries during cardiovascular development. Integrin-linked kinase (ILK) is a serine/threonine kinase and a major regulator of integrin signaling. It links integrins to the actin cytoskeleton and recruits other adaptor molecules into a large complex to regulate actin dynamics and integrin fu...
متن کاملDissecting integrin-dependent regulation of neural stem cell proliferation in the adult brain.
Controlling neural stem and progenitor cell (NSPC) proliferation is critical to maintain neurogenesis in the mammalian brain throughout life. However, it remains poorly understood how niche-derived cues such as β1-integrin-mediated signaling are translated into NSPC-intrinsic molecular changes to regulate NSPC activity. Here we show that genetic deletion of integrin-linked kinase (ILK) increase...
متن کاملβ1-Integrin alters ependymal stem cell BMP receptor localization and attenuates astrogliosis after spinal cord injury.
Astrogliosis after spinal cord injury (SCI) is a major impediment to functional recovery. More than half of new astrocytes generated after SCI are derived from ependymal zone stem cells (EZCs). We demonstrate that expression of β1-integrin increases in EZCs following SCI in mice. Conditional knock-out of β1-integrin increases GFAP expression and astrocytic differentiation by cultured EZCs witho...
متن کاملIntegrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کامل